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The Boltzmann equation and its solutions are cental to the development of microscopic 
models describing the longitudinal and transverse electrical conductivity of metal matrix and in 
situ composites. Such solutions are needed to describe electron and phonon scattering and 
transport phenomena in the matrix due to the presence of a second filamentary phase, and to 
describe electrical conductivity at cryogenic and higher temperatures. In this paper, we derive 
solutions to the Boltzmann equation in the relaxation time approximation in cylindrical co- 
ordinates. It is shown that one solution for the electric field parallel to the fibre direction leads 
to an expression for composite conductivity at cryogenic and higher temperatures. We also 
present a solution for the case in which the electric field is normal to the fibre direction. 

1. I n t r o d u c t i o n  
A number of experimental studies on the electrical 
conductivity of metal matrix and in situ composite 
materials have been reported [1 6]. In these studies, 
experimental results are discusssed and related to con- 
duction models. These models are either modified 
forms of the rule of mixture or simple equations based 
on Dingle's [7] asymptotic solution for electrical con- 
duction in thin wires and thin films when the reinforc- 
ing filaments are either much larger or much smaller 
than the bulk electron mean free path. To some extent, 
these models provide a simple theoretical explanation 
of the observed phenomena, but because of their sim- 
plicity, fail to provide a satisfactory insight into the 
phenomena of low-temperature conduction (resistivity) 
in metal matrix and in situ composites. Moreover, 
these models are limited to the experiments under dis- 
cussion and, consequently, are inadequate for the 
prediction of the electrical behaviour of composites at 
low temperatures in general. 

A general theory of composite conduction at 
cryogenic and higher temperatures was developed by 
Roig and Schoutens [8]. This theory is founded on a 
solution of the Boltzmann equations and applied, 
after numerical integration, to the electrical conduc- 
tion of a metal matrix composite (MMC) in a direc- 
tion parallel to the reinforcing fibres. A similar 
approach is now being developed by Roig and 
Schoutens [9] for the electrical conduction of MMCs 
in a direction transverse to the reinforcing fibres. The 
Boltzmann equations and its solutions were also 
applied to describe the resistivity phenomena of thin 
reaction regions and thin-walled tubes around a non- 
conducting fibre [10]. 

In these developments, the Boltzmann equation 

and its solutions are central to an understanding of 
low-temperature electrical conduction phenomena in 
metal matrix and in situ composites. Solutions to the 
Boltzmann equation are needed to describe electron 
and phonon scattering and transport phenomena in 
the matrix as a result of their interaction with fibre 
surfaces. 

In describing longitudinal composite electrical con- 
duction at low temperature [8], we dealt with the 
problem of electron transport in MMC materials by 
solving the linearized Boltzmann equation with a 
small electric field directed along the axis of the fibres. 
The mean free path for electron scattering from the 
fibre surfaces was assumed to be no greater than half 
the average fibre separation distances. Thus, there was 
essentially no overlap between scattering regions for 
adjacent fibres. Consequently, the problem reduced to 
that of finding the scattering from the external surface 
of a cylindrical surface. For this purpose, we applied 
the appropriate boundary conditions at the fibre sur- 
face to the general solution of the Boltzmann equation 
with cylindrical symmetry found by Dingle [7]. The 
same general solution was used to calculate the electri- 
cal conductivity of thin-walled tubes and the 
boundary conditions were applied to the surfaces of 
two coaxial cylinders [10]. 

Dingle [7] solved the Boltzmann equation with cylin- 
drical symmetry using an indirect approach: first, he 
found the general solution in rectangular co-ordinates, 
and then selected the solutions with the appropriate 
symmetry. In this paper, we solve the Boltzmann 
equation directly in cylindrical co-ordinates. The 
method is general and straightfoward. First, we find 
the general solution when there is cylindrical sym- 
metry, and then, we find the general solution when 
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there is no cylindrical symmetry. The latter solution is 
of interest when dealing with the problem of over- 
lapping scattering regions mentioned above and when 
the electric field is transverse to the fibre axis. 

2. The solution of the Boltzmann 
equation with cylindrical symmetry 

The linearized Boltzmann equation in rectangular co- 
ordinates, in the relaxation time approximation, and 
with small applied electric field/~ is 

Fl(r, V) e/~ V~FO(v ) (1) 
�9 V~F 1(~,~) + = m~g" 

where e is the absolute value of the electronic charge 
and m* is its effective mass, �9 is the relaxation time for 
scattering, 6 = ~5(Vx, Vy, Vz) is the electron velocity, 
?(x, y, z) is the electron position, and F ~ is the change 
in the equilibrium distribution function F ~ when a 
small electric field is applied. 

If we consider a unidirectional fibre reinforced 
metal with E" directed along the axis of the fibres, 
Equation 1 becomes 

OF 1 ~ F  1 F l e E  OF ~ 
v x ~  + Vy-~y + - (2) 

"~ m *  ~ v  z 

where the z-axis is parallel to the electric field. Taking 
cylindrical co-ordinates x = r cos O, y = r sin 0, and 
z = z, we obtain for the velocity 

Vx = v~ cos0 - Vo sin0 (3) 

Vy = Vr sin0 + Vo cos0 (4) 

Vz = v~ (5) 

Now, when the problem has cylindrical symmetry, F l 
does not depend on the angle 0 and the two partial 
derivatives in x and y become 

- -  _ _  V 0 - -  ax cos 0 Or r ~ vr (6) 

0y0 _ s i n 0 ~  + c o s 0 (  O _ _ r  VO ~ V  r - -  Vr ~--~0) (7) 

Consequently, Equation 2 transforms into 

~ F  1 v20 OF 1 VoV~ # F  l F 1 e E  OF ~ 
Vr ~'-F -~- m* r ~v~ r Ovo + - ~  = ~v~ (8) 

Equation 8 can be solved directly using general 
methods from the theory of quasilinear first order 
partial differential equations [11]. The characteristic 
system associated with Equation 8 is 

dr rdvr rdvo d F  1 

V r -- '020 -- VoV r -- A - F1/'r: (9) 

where 
e E  OF ~ (v) e E  v~ OF~ 

- (1o) 
m* ~v z m*  v 6v  

= (v~ + v20 + ~,~z) '/~ (11) 

To find the general solution of Equation 8, we need to 
find first three independent integrals of the system of 
Equation 9. These are obtained as follows from 

dr  rdvo 
- ( 1 2 )  

V r 2)0'U r 

it follows immediately that 

rvo = constant = 

and from 

the results 

rdv  r rdvo 

73 2 730 73 r 

2 V r Jr- V 2 

Next, we consider 

dr 

V r 

o r  

(13) 

= constant - fl (14) 

rdvr d F  1 

v 2 A -- F1/"c 

vrdr  + rdvr d F  l 
2 V r ~- V 2 A -- F 1/z 

0 5 )  

(16) 

Now, A is of the form vzg(v)  = Vzg[(v 2 + v 2 +  

VZz)~/2], which, when introduced into Equation 16 
together with Equation 14, gives 

d(rvr) dF  I 
- vzg[(/3 + v~) '/2] - ( F ' / z )  (17) 

and since Vz is just a parameter, Equation 17 can be 

= constant =_ 7 

(18) 

integrated to give 

{Vzg[([~--~ V2z) 1/2] - -  - ~ } e x p  (F'Ur~xT/3j 

and replacing fl by its definition given above, we 
obtain the integral 

A -  exp (v~ + v20)~J = constant ~ 7 

(19) 

The general solution of Equation 8 is now obtained by 
setting an arbitrary relationship between the three 
integration constants ~,/3, and 7, or F(~, t ,  7) = 0. 
Using the integrals given by Equations 13, 14 and 19 
to eliminate these constants, we obtain 

+~  le' p[ v 2 vr 1t + vb'c = 0 

(20) 

which is the general solution to Equation 8. Equation 
20 can be rewritten in the form 

A - T exp (v~ + v~)~ = *(rvo,  Vr + v~) 

(21) 

where �9 is an arbitrary function. Letting �9 -- A f  

with f arbitrary, the general solution, Equation 21, 
becomes 

eE~ ~ F  ~ 
F 1 = 

m *  OVz 

[ 2 ( _1 rv r 2)  1 ( 2 2 )  • 1 - f ( r v o ,  Vr + v20)exp ~ vr2 + v 
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This is the same solution found by Dingle [7] using an 
indirect method. The funct ionf is  determined from the 
boundary conditions of the problem. 

3. Applications of the general solutions 
We consider two cases: Case A in which the electric 
field is directed along the axis of  the fibre (z-axis), and 
Case B in which the electric field is transverse to the 
fibre axis. In both cases, the distribution function 
depends on the angle 0 and all other variables. 
Therefore, the partial derivatives in x and y become 

 in0(  
- -  _ _  + V O  - -  V r c3x cos 0 8r r 

(23) 

8 _ sin0 8 cos0(~?  8 ~ )  
8y Or + - r  ~ + v~ ~ - v~ 

(24) 

which are now used to construct solutions for each 
c a s e .  

3.1. Case A: parallel electric field 
When the electric field is parallel to the axis of  the 
fibres, the Boltzmann equation is 

8F I v~ 8F ~ %% ~F I 

Vr ~r + r 8v~ r 8ve 

v o OF 1 F 1 eE ~F ~ 
+ - - - -  § - " (25) 

r 80 r m* 8% 

and the characteristic system is 

dv~ rd% rdvo rdO d F  1 

v~ v 2 VoVr Vo A - F I / r  

(26) 

The general solution of Equation 25 requires four 
independent integrals of Equation 26. Three of  these 
integrals are Equations 13, 14 and 19, and the fourth 
integral is obtained from 

rdvo rdO 
- ( 2 7 )  

V0'U r V 0 

Introducing v~ = +(/3 - v~) m, where Equation 14 
with the positive root was used, Equation 27 becomes 

dvo 
(/3 _ v~),/2 - dO (28) 

which integrates to 

0 + sin t (v~ + v~) 1/2 = constant - 6 (29) 

It can be easily verified that the negative sign for the 
square root  of v~ does not result in a solution to the 
Boltzmann equation. Proceeding as in Section 2, we 
obtain the general solution 

F1 _ eE~m. 8F~ { 1 -- f ( rvo ,  V r2 ~_ Vg, 0 -]- @) 

[ ,( rv,  3o, 
x exp - 7 v2r + v2o}_]) 

with E v o l  
~0 = sin -1 (v~ -~-v~) 1/2 (31) 

This solution can be used to find the electrical con- 
ductivity when the scattering regions from adjacent 
fibres overlap. The solution without overlap in scatter- 
ing regions was used to calculate the electrical conduc- 
tivity for an MMC with the electrical field parallel to 
the fibre axis. This led to the following equation [8] 

a0a _ 1 -- (1 - p) ~ 6a2 [!~/+2/k)xdx Io/2 cos 2 0 sin 0 dO 

x f~i, ~0/~) exp { -- k[xcos ~o 

- (1 - x2sin2q))l/2]/(2sinO)} d e  (32) 

where x = r/a; a is the fibre radius; k = 2a/A0, where 
A0 is the electron scattering mean free path; 0 and q~ 
are position angles; Ac is the cross-sectional area of  the 
region of  interest, in this case, a square cell with a fibre 
in each corner; p is the fibre surface reflection 
coefficient; a is the conductivity within the cell altered 
by fibre surface scattering; and a0 is the bulk conduc- 
tivity. Equation 32 was integrated numerically [8], 
resulting in a linear relationship between the value of 
the integrals and k. Assuming that the fibre surfaces 
are rough relative to the electron scattering mean free 
path, we set p = 0, and using the definition of  the 
fibre volume fraction for the square cell of  interest, we 
obtained the following equation for the composite 
electrical resistance (conductivity) along the fibre 

oc(T) = Oo x 

( V~ ,]2 -1 
{(l -- Vf) I I - 2 1 . 2 3 ~  j ( 3 +  T)T-3~ 

(33) 

This equation was derived on the assumption that 
there is a simple linear relationship between k and 
temperature. Therefore, this equation shows a sharp 
rise in electric resistivity of a composite at very low 
temperatures [8]. At temperatures above about 100 K, 
it predicts that oc(T) = 00(1 -- Vr) 1, in agreement 
with experimental data [12]. Note that the assumption 
o f p  = 0 is not correct for in situ composites because 
it has been observed that the surfaces of such in situ 
filaments are quite smooth and, hence, p -~ 0 to 0.5 
[1, 21. 

3.2.  Case  B: t r a n s v e r s e  e lec t r ic  field 
When the electrical field is transverse to the fibres, the 
right-hand side of Equation 25 is given by 

eE OF ~ eE  Vy 8F ~ 
- = % h ( v )  ( 3 4 )  

m* 3Vy m* v 8v 

where we have chosen the y-axis parallel to the electric 
field direction and perpendicular to the fibre direction. 
Equation 4 gives Vy in terms of  vr and Vo, and v is given 
by Equation l l. Thus, the Boltzmann equation 
becomes 

8 F  1 v 2 ~ F  1 VrVO OF j Vo ~F ~ F z 
vr-~r + - -  - - _ _ +  - -  r ~v~ r OVo + r ~0 "c 

(% sin 0 + vo cos O)h(v) (35) 
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The characteristic system has Equations 13, 14 and 29 
as integrals, and the fourth integral is obtained from 

dr rd% dF 1 
V r V 2 (V r sin 0 + Vo cos O)h(v) - FI/ 'c  

o r  

d(r%) dF  1 

V 2 -~- V 2 ('O r sin 0 + Vo Cos O)h(v) - F' /r  

(36) 

Now, % sin 0 + vo cos 0 = (v~ + v~) 1/2 (cos q) sin 0 + 
sin ~o cos O) = (VZr + Vg) v2 sin (0 + q)), where 
COS q) = 'Ur/('Ur 2 "]- Vg) 1/2 and sin ~o = Vo/(V 2 + v~) m. 
Then, substituting into Equation 36 and inserting the 
integrals 14 and 29, there results 

d(rvr) dF  l 
fi - fll/2h[(v2z + fir/2] sin 6 -- F~/v (37) 

which, when integrated, gives 

{fl'/2h[(v2z + fl)l/Z] sin 6 -- F---f} 

(rVr  
x exp \ r f l ]  = constant = e (38) 

2 and since fl = vr + v~ and 6 = 0 + ~o, we finally 
obtain the fourth integral, or 

[sin(0 + ~o) (V2r + v2)l /2h(v)  --  F'] 
/ ~ h  

] x exp L~(v ~ + v~) = e (39) 

But, sin(0 + ~o) (v 2 + v~)~/2h(v) = (eE/m*)SF~ 
then, the general solution in transverse field can be 
written as 

( ~ ,  ~F~ F~-) exp [.r(vzrrVr v~)] 
0% + 

2 v 2, 0 (40) = q~(rvo, V r "-~ + q)) 

where �9 is an arbitrary function, and when solving for 
F ~ , we obtain 

F 1 eEr ~F ~ 
2 v~, 0 - -  - ~ O ( r v o ,  vr  + + ~o) 

m* 0% 

I r V r ) l  x exp z(v~ + v 2 

Using the fact that OF~ = (Vy/V)~3F~ and 
recognizing that v = (v 2 + v~ + v~) 1/2 and Vy = 
Vr sin 0 + Vo Cos 0, Equation 41 becomes 

F' eE~ OF ~ {1 - 1 
= m* 8v v r sin 0 + Vo cos 0 

x f(rvo, vr + + q)) exp - rvr 

where 

2 v~, 0 ( e E  1 ~F~ -I 
f(rvo, % + + ~b) = m-* v -ffvv J 

x ~(rvo, v~ + v~, 0 + q)) (43) 

wheref i s  an arbitrary function to be determined from 
the boundary conditions. Equation 42 is the general 
solution of the Boltzmann equation in a transverse 
electric field. This solution can be used to calculate the 
transverse resistance of metal matrix and in situ com- 
posite materials. Note that in the absence of boundary 
surfaces, the solution given by Equation 42 reduces to 

eEv ~F ~ 
E l - (44) 

m *  ~v 

which is the bulk solution when the electrical field is 
along the y-axis. 

4. Conclusions 
The Boltzmann equation in the relaxation time 
approximation has been solved directly using cylindri- 
cal co-ordinates. It is found that the only difference 
between the general solution when there is no cylindri- 
cal symmetry and the general solution when there is 
cylindrical symmetry is the addition of an angular 
variable to the arbitrary function that appears in the 
latter solution. This angular variable consists of the 
sum of two angles: one is the angle 0 defined by the 
cylindrical co-ordinates, and the other is the angle ~b 
defined by the radial and tangential components of  the 
electron velocity. The general solution can be used to 
calculate the electrical resistivity of metal matrix and 
in situ composites for an electrical field along the fibre 
direction when the scattering regions of  adjacent fibres 
overlap, and to calculate the electrical resistivity of the 
composites when the electrical field is normal to the 
fibre direction. We have presented such a solution for 
the electrical resistivity of  MMCs when the electric 
field is parallel to the fibres and in the absence of  
overlapping scattering regions. 
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